If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x-896=0
a = 3; b = -2; c = -896;
Δ = b2-4ac
Δ = -22-4·3·(-896)
Δ = 10756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10756}=\sqrt{4*2689}=\sqrt{4}*\sqrt{2689}=2\sqrt{2689}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{2689}}{2*3}=\frac{2-2\sqrt{2689}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{2689}}{2*3}=\frac{2+2\sqrt{2689}}{6} $
| -3c=37 | | −3(t+6)=0 | | x+4/16=5/8+x-1/4 | | 4+2p=36 | | -6n-9n=45 | | (5x+14)+(2x+50)=180 | | t/3−2=2 | | 7(5+2c)+3c=7= | | 3x^2-6x-896=0 | | z4+6=10 | | z4+ 6=10 | | x+4/16=5/8+x-1/7 | | -21(-4m-6.4)=44.8 | | (3/(5x))+(7/(2x))=1 | | (11x-12)+(3x+18)=90 | | 0.1x+0.15(20-x)=(0.12)(20) | | u+3.88=6.71 | | p-7=71 | | 67=3.5q | | 0.10x+0.15(20-x)=(0.12)(20) | | 7x+4x=5 | | -8(x-5)=30-6x | | 0.10x+0.15(20+x)=(0.12)(20) | | 7x^2+8x+45x^2+65=0 | | h+86/2=-5 | | 0.10x+(0.15)(20)=0.12(20+x) | | 2(9)+9x=-18 | | 35x=17 | | e+1.2=2e+1.2=2 | | 2(3x+6)=-21+27 | | −5x+4=−46 | | 7a+a=-24 |